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Abstract

The coupling of acoustic waves in an elastic-walled duct with structural waves in the wall(s), at low
frequencies, gives rise to dispersive coupled structural/acoustic modes. Propagating coupled modes consist
of a ‘‘fast wave’’, which propagates at all frequencies, together with ‘‘slow waves’’, which propagate above
their ‘‘cut-on’’ frequencies. The fast wave is well known and has been experimentally observed many years
ago. The lowest order slow wave has also been—indirectly—observed previously, though not independently
of the fast wave. In this investigation, an identification technique involving a genetic algorithm and active
control has permitted the separate visualization of the lowest order slow wave and the fast wave, in the case
where these two modes coexist.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In dynamics, problems involving structural/acoustic coupling have been tackled by various
methods, from analytical modal descriptions of coupled wave motion to numerical methods
including finite differences, finite elements and boundary elements. On the other hand, only a few
characteristic physical phenomena have been well identified. Two of these are, first, alteration of
the resonance frequencies of the two media considered separately (the structure alone and a
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rigid-walled acoustic cavity) and secondly, damping in the structure caused by acoustic
radiation. Another physical phenomenon, in the case of guided waves, is associated with
the particular nature of the coupling between the guided acoustic wave and the flexural motion
in the walls of the waveguide. Here, the speed of the coupled wave system can be subsonic
or supersonic, even for quasi-plane waves. Analytical models describing the effects of wall
motion on guided acoustic waves have existed for several decades. Morse and Ing(ard [1], for
example, give a good account of these effects. More recently, research on structural/acoustic
coupling in ducts has involved both modelling (for example, in the work of Cabelli [2] and
Martin and Vignassa [3]) and combinations of modelling and experimental observation (as
in the work of Cummings [4] and Martin [5]). It has been shown theoretically [2–7] that
there is a multiplicity of coupled structural/acoustic modes in both acoustically lined and
unlined ducts, and that these modes are, in general, dispersive. Experimental data [4–7] are
in agreement with these results. Gautier and Tahani [8] have demonstrated, both theoretically
and experimentally, the existence of two structural/acoustic coupled waves in a circular rubber
tube.

In general, more than one coupled mode can coexist and, even in experimental duct systems, a
combination of propagating and evanescent coupled modes is usually present. One may
ask whether each of these modes can be observed in isolation by the removal of others. This
question also has relevance in a wider context, since coupled modes in which most of
the mechanical power flow is in the structure (as opposed to the fluid) can play a role in
flanking transmission mechanisms in dissipative duct silencers [9,10] and the removal of these
modes from the vibroacoustic field in these devices could be a means of enhancing the acoustic
performance.

In the present investigation, active control is applied to sound propagation in an experimental
unlined duct with one flexible wall. The effort is concentrated on the removal of one or more
coupled structural/acoustic waves. In this first investigation, the active control technique
employed is similar to the original 1936 technique of Lueg, later termed ‘‘single channel feed-
forward control’’ [11]. It is, in essence, a procedure by anticipation in the sense that the controller,
the output of which is the driving signal to the secondary source intended to cancel the acoustic
field, is totally predetermined on the basis of physical predictions of the result. There is no
correction in the controller to improve the result after it has been observed, as there would be in a
retroaction type such as the (by now) well-known auto-adaptive controller. The type of control
used here has been analyzed recently in a simple configuration to test the adequacy of
understanding of the entire electro-acoustic path [12].

In the first part of this paper, consideration is given to theoretical dispersion relationships for
coupled waves, and the experimental arrangement is described. Some experimental data on a
combination of two coupled waves are next presented, and the use of a genetic algorithm for the
experimental determination of the amplitudes and phases of the two travelling wave components
(in both directions along the duct axis) of each wave is described. The phase speed of each wave
and its complex amplitude are thus found. The method of active control is implemented on the
basis of these results, and each wave in turn is examined, the other being removed by the active
control system. The results of this visualization technique are presented. The active control
formulation is applied to structural waves in the flexible wall, but the secondary source—
providing the ‘‘cancellation’’ signal—is acoustic.
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2. A brief description of wave coupling

Since this investigation is mainly concerned with the experimental visualization of individual
coupled modes by active control, the analysis of these modes will be presented rather briefly. This
is done here in two parts. First, an approximate formulation, based on a variational technique, is
given so that a simple analytical dispersion relationship may be obtained; this gives some physical
insight into the problem. Secondly, a more accurate method is given, based on an exact solution of
the structural equation of motion, leading to a dispersion relationship that gives predictions of
sufficient accuracy for the purpose. Dispersion curves are given for the experimental duct.

2.1. Configuration of the experimental duct and establishment of an approximate dispersion
relationship

The experimental duct was fabricated at the University of Hull, and was of rectangular cross-
section, measuring 90 mm� 100mm. It had three walls of 12mm perspex, which were effectively
rigid, and one wall (100mm wide) of 0.6mm aluminium plate, clamped along both edges, which
was flexible. The duct is depicted in Fig. 1. One source loudspeaker was located at one end of the
duct and another (on the lower, rigid, wall of the duct and not shown in Fig. 1) was situated about
half-way along the length of the duct. A partially anechoic termination for both structural waves
in the flexible wall and acoustic waves in the duct was located at the other end. A length of duct
with all four walls rigid was placed between the source at the end of the duct and the beginning of
the flexible duct wall. The flexible wall was clamped at the point where it met the abutting rigid
wall. The transition between the rigid and flexible-walled duct sections was deliberately included
so that a plane sound wave, incident from the rigid section, would generate a combination of
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coupled structural/acoustic modes in the flexible-walled section. The effective width of the flexible
wall was, because of the slightly rounded corners of the clamping bars, 107mm rather than
100mm.

An approximate dispersion relationship for a uniform duct with partly rigid and partly flexible
walls may be established as follows. The geometry is shown in Fig. 2. It is assumed that the flexible
part of the walls consists of a thin flat plate of width S: The axial co-ordinate is x and y is a
position vector on the cross-section of the duct. On the cross-section, the region within the duct is
denoted R and the flexible wall is denoted C in what follows. It will be assumed that a positive
travelling coupled structural/acoustic mode propagates in the duct and plate, with a common
axial wavenumber kx: The sound pressure in R may be written as

p ¼ PðyÞ exp½iðot � kxxÞ� ð1aÞ

and the outward plate displacement as

u ¼ UðsÞ exp½iðot � kxxÞ�; ð1bÞ

s being a transverse co-ordinate on the plate. The acoustic wave equation in R and the equation of
motion of the flexible wall may be written

r2
t P þ ðk2 � k2

xÞP ¼ 0; g½ðd2=ds2 � k2
xÞ

2U � k4
pU � ¼ PpðsÞ; ð2a;bÞ

where r2
t is the Laplacian operator in two dimensions on the duct cross-section, k is the acoustic

wavenumber o=c; o being the radian frequency and c the sound speed, kp is the plate
wavenumber, equal to ðmo2=gÞ1=4; m and g are the mass/unit area and flexural rigidity of
the plate and PpðsÞ is the amplitude of the interior/exterior acoustic pressure differential pp forcing
the plate motion, defined by pp ¼ PpðsÞexp½iðot � kxxÞ�: The flexural rigidity is given by
Eh3=12ð1 � n2Þ; where E is Young’s modulus of the plate material, n is the Poisson ratio and h is
the plate thickness. Astley [13] has described a variational approach to the analysis of low
frequency sound propagation in a duct with a partially flexible wall, a bulk-reacting acoustic
lining and a mean fluid flow, which may be adapted to the present case by discounting the
presence of the lining and putting the mean flow Mach number equal to zero. The variational
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functional of Astley may then be written

F ¼ ro2

Z
C

fðg=2Þ½ðd2U=ds2Þ2 þ 2k2
xðdU=dsÞ2 þ ðk4

x � k4
pÞU

2� � UPpgds

þ
1

2

ZZ
R

½rtP � rtP � ðk2 � k2
xÞP

2� dR; ð3Þ

where r is the density of the gas within the duct. The Euler equations of this functional are:
Eq. (2a,b), (with the constraint of zero displacement at the edges of the flexible wall), the rigid-
wall boundary condition on the rigid part of the duct wall, and equality of the normal plate
displacement and the normal acoustic particle displacement in the internal sound field on C
(provided that the normal gradient of sound pressure is allowed to vary freely at the outer surface
of the flexible wall). In the case of low frequency sound propagation in the duct, the sound
pressure may be assumed approximately uniform on y (see the comment by Cummings [10]:
‘‘Comparisons between Cabelli’s predicted coupled modal axial wavenumber data (for a non-
uniform internal sound field) and those based on a plane-mode approximation show very close
agreement between the two up to the cut-on frequency of the first acoustic higher order mode in
the equivalent rigid-walled ducty’’). If it is also assumed that the flexible duct wall has edges that
are rigidly clamped and that the acoustic radiation load on the outer surface of the plate is
negligible, a simple two-degrees-of-freedom Rayleigh–Ritz formulation may be implemented by
taking a constant-amplitude trial function for the sound pressure,

PðyÞ ¼ PpðsÞ ¼ P0 ð4aÞ

and a simple trial function for the plate displacement,

UðsÞ ¼ U0 sin2ðps=SÞ: ð4bÞ

Eq. (4b) is (as numerical studies reveal) a reasonable approximation to the computed plate
displacement at frequencies below the frequency of the second (symmetrical) transverse structural
resonance of the duct walls. Insertion of Eqs. (4a) and (4b) into Eq. (3) and integration (which is
straightforward) yields

F ¼ ro2ðg=2ÞU2
0 ½2Sðp=SÞ4 þ Sk2

xðp=SÞ2 þ ð3=8ÞSðk4
x � k4

pÞ�

� ro2P0U0S=2 � ðk2 � k2
xÞP

2
0R=2: ð5Þ

Stationary values of the functional F are now sought, satisfying dF ¼ 0; or equivalently @F=@P0 ¼
0; @F=@U0 ¼ 0: This leads to a system of two homogenous linear equations in P0 and U0; which
yield the cubic dispersion relationship

K3 þ ½ð8=3Þðp=SÞ2 � k2�K2 þ ½ð16=3Þðp=SÞ4 � ð8=3Þk2ðp=SÞ2 � k4
p�K

þ ½k2k4
p � ð16=3Þk2ðp=SÞ4 � ð2=3Þro2S=gR� ¼ 0; ð6Þ

where K ¼ k2
x and R represents the cross-sectional area of the duct. This equation should be

approximately valid at frequencies where the sound pressure distribution within the duct is
approximately plane and where the wall displacement profile may be approximated by the sin2ðÞ
relationship of Eq. (4b), i.e., below the frequency of the second (symmetrical) transverse
resonance in the flexible wall. Clearly, propagating coupled modes—with real values of kx—
correspond to positive values of K ; since kx ¼ 7

ffiffiffiffi
K

p
: Up to three propagating modes in each
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direction are in principle accommodated by Eq. (6). The above formulation may easily be
modified to suit the case of a square section duct with four flexible walls (and therefore no rigid
walls), and then the only change required in Eq. (6) is that R is replaced by R=4:

2.2. A more accurate dispersion relationship

Better accuracy may be obtained, at the expense of greater complexity in the solution, by again
assuming that the acoustic wave in the duct is plane, but this time finding an exact solution for the
wall displacement pattern. Either the method described by Astley [13] or that of Cummings [4]
may be followed (both lead to the same result), and a dispersion relationship

kx ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � iS/bðkxÞS=kR

p
ð7Þ

is obtained in the present case, where /bðkxÞS is the dimensionless admittance presented by the
flexible wall to the internal sound field (normalized against rc), averaged over S: If it is again
assumed that the radiation load on the outer surface of the flexible wall may be neglected then, for
clamped boundary conditions along both edges of the flexible wall, an exact solution of Eq. (2a,b)
may be obtained, yielding an expression for the average wall admittance,

/bðkxÞS ¼ iorc
A1

a1S
sinða1SÞ �

A2

a1S
½cosða1SÞ � 1� þ

A3

a2S
sinhða2SÞ

(

þ
A4

a2S
½coshða2SÞ � 1� þ

1

gðk4
x � k4

pÞ

)
; ð8Þ

where

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p � k2
x

q
; a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p þ k2
x

q
ð9a;bÞ

and

A1 ¼fa1½1 þ cosða1SÞ � coshða2SÞ � cosða1SÞcoshða2SÞ�

þ a2sinða1SÞsinhða2SÞg=gðk4
x � k4

pÞ½2a1cosða1SÞcoshða2SÞ

� 2a1 þ ða2
1=a2 � a2Þsinða1SÞsinhða2SÞ�;

A2 ¼fa1sinða1SÞ½1 � coshða2SÞ�

þ a2sinhða2SÞ½1 � cosða1SÞ�g=gðk4
x � k4

pÞ½2a1cosða1SÞcoshða2SÞ

� 2a1 þ ða2
1=a2 � a2Þsinða1SÞsinhða2SÞ�;

A3 ¼ � A1 � 1=gðk4
x � k4

pÞ;

A4 ¼ � A2a1=a2: ð10a–dÞ

Eq. (8) is inserted in Eq. (7), and roots of this equation are sought. The usual root-finding
methods will not normally identify all the solutions of (7), because of the rather difficult, multi-
branched, nature of the function on the left hand side (see the discussion by Cummings in
Ref. [6]). The most reliable method of root finding is the very simplest graphical method of
identifying the zero-crossings that can be seen to correspond to roots of the function, and this was
employed here. It is of interest to compare results from Eqs. (6) and (7).
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2.3. Numerical results of modal phase speed and comparison between the two solutions

The system parameters for the experimental duct, as used in the computations, were as follows:
E ¼ 7:2 � 1010 Pa, m ¼ 1:62 kg/m2, n ¼ 0:34; r ¼ 1:2 kg/m3, c ¼ 344m/s, h ¼ 0:6 mm, S ¼
107mm, R ¼ 0:009m2. A comparison between the phase speeds of the propagating modes,
predicted from Eqs. (6) and (7), is shown in Fig. 3. The frequency range is 100–1500Hz, and
covers the range of interest in the experiments. Below 330Hz, only one mode (‘‘mode 1’’)
propagates (i.e., there is only one positive real root of Eqs. (6) and (7)), but above this frequency—
which corresponds to the first transverse resonance frequency of the flexible wall, subjected to the
internal acoustic load—a further mode (‘‘mode 2’’) appears, and both modes 1 and 2 propagate.
At low frequencies, mode 1 travels at a speed rather less than the acoustic speed (because of the
stiffness-controlled impedance of the flexible duct wall) and is an ‘‘acoustic’’ type mode since the
power flow is predominantly in the fluid (see for example the discussion by Cummings [10]).
However, around ‘‘cut-on’’ for mode 2, the phase speed of mode 1 falls rapidly and above 500Hz
is close to the free wave speed of a purely structural mode with one displacement maximum in the
centre of the flexible wall. Mode 1 is a predominantly ‘‘structural’’ type mode in this frequency
range, since most of the power flow is in the flexible wall. In contrast, mode 2 is essentially an
‘‘acoustic’’ type mode between 500 and 1500Hz, in which range its phase speed is rather higher
than the sound speed. At a frequency above the range of the plot in Fig. 3, a third mode (initially
of the acoustic type) will appear, and above its cut-on frequency, both modes 1 and 2 will be of the
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structural type. This pattern is repeated as further modes begin to propagate at successively higher
frequencies.

It is observed from the data in Fig. 3 that the variational solution of Section 2.1 is overall in
very close agreement with the more accurate prediction of Section 2.2. Some small discrepancies
are evident around the cut-on frequency of mode 2, but these are rather insignificant. Either
method would be acceptable for the prediction of the modal phase speeds in this investigation, but
Eq. (7) was chosen because of its marginally greater accuracy.

3. Visualization of individual coupled modes by active control

Active control is a technique for attenuating acoustic or vibratory fields which involves the
addition, to the ‘‘primary’’ acoustic or structural wave, of a ‘‘secondary’’ wave of the same form
but with opposite sign. These two waves cancel each other to leave a null acoustic field. The
implementation of this rather simple idea usually requires the real-time adaptation of convolution
coefficients in a filter, the output of which is the driving signal of the secondary source or—very
rarely—a full prediction of the filter coefficients based on complete knowledge of propagation and
transducers, i.e., on comprehensive modelling of the configuration considered. The present
method of control is based on a generalization of active control of plane guided waves, and here
the experimental identification of wave characteristics plays the role of modelling. In the broader
context discussed in Section 1, a further development of the ideas presented in this paper would
benefit from auto-adaptive control, which would however require partial modelling in the present
case.

3.1. Generalization of the active control of plane guided sound waves

As mentioned in the Introduction, active control is applied here to structural waves in the
flexible wall (for reasons which will later become apparent). However, the secondary source is
acoustic, and the vibrational cancellation signal results from the structural response to fluid wave
motion induced by this source.

If the structural/acoustic configuration considered in this paper gives rise to just one dispersive
coupled mode made up of an acoustic plane wave and a transverse structural mode, say CðsÞ; the
primary vibratory acceleration at (x; s) may be expressed by g0ðx; sÞ ¼ m0ðxÞCðsÞ and the
acceleration response at (x; s) arising from an acoustic source at xs can be written Gðx; xs; sÞ ¼
nðx; xsÞCðsÞ: Control of the acceleration in the least-mean square sense follows the well-known
minimization algorithm, written

min
f

FðfÞ ¼ min
f

Gðx; xs; sÞfþ g0ðx; sÞ
�� ��2

L2ðGÞ; ð11Þ

where f is the driving signal of the secondary acoustic source at xs; also termed the ‘‘secondary
control’’, Gðx; xs; sÞf constitutes the secondary vibratory field, and G is the part of the yielding
wall such that xXx0 and xXxs if x0 is the primary source location. The L2-norm in a domain O is
defined in a continuous form as jjf ðuÞjj2L2ðOÞ ¼

R
O jf ðuÞj2 du: In the case where f is a column vector,

fj j2¼ f� � f; the asterisk denoting the transpose conjugate (or conjugate in the case of a scalar). The
optimal control fopt that minimizes F ðfÞ; a quadratic function of f; is obtained by annulling the
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variation of F resulting from a variation of f .This results in

fopt ¼ �
1

jjGjj2L2

Z
G

G�ðx; xs; sÞg0ðx; sÞ dx ds; ð12Þ

leading to FðfoptÞ ¼ Fmin ¼ 0: The least-mean square norm is the modulus if the domain is made
up of only one point (x; s), where the accelerometer is located, and the solution f (for only one
point with xXx0 and xXxs) has the same value as that obtained from (12), thus resulting in null
acceleration at (x; s) with the very interesting consequence that the vibratory field is also zero
everywhere beyond point xXðx0;xsÞ: The acoustic pressure would also be zero on the far side of
this point.

Consider now two coupled modes propagating simultaneously. The acceleration at any point
has four components, associated with the positive and negative travelling waves for each mode
(these are numbered 1 and 2, respectively, for the slow and fast waves; see Fig. 3). For the sake of
generality we introduce the transverse structural modal shape of each of them, say c1ðsÞ and c2ðsÞ:
The acceleration along the wall is therefore written

g0ðx; sÞ ¼ ða01e
�ik1x þ b01e

ik1xÞC1ðsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g01ðx;sÞ�slow

þða02e
�ik2x þ b02e

ik2xÞC2ðsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g02ðx;sÞ�fast

ð13Þ

or, insofar as each component g01ðx; sÞ and g02ðx; sÞ can be seen as independent, g0 can be written
in matrix form:

c0ðx; sÞ ¼
g01ðx; sÞ

g02ðx; sÞ

( )
¼

C1ðsÞ 0

0 C2ðsÞ

" #
e�ik1x 0

0 e�ik2x

" #
a01

a02

( )
þ

eik1x 0

0 eik2x

" #
b01

b02

( ) !

or

c0ðx; sÞ ¼ WðE�a0 þ Eþb0Þ: ð14Þ

Assuming a linear and passive termination, the vectors a0 and b0 can be related via a reflection
matrix R, which implies

c0ðx; sÞ ¼ WðE� þ EþRÞa0: ð15Þ

Matrix R is diagonal if mode C1ðsÞ (or C2ðsÞ) generates only mode C1ðsÞ (or C2ðsÞ) upon reflection
at the termination. In the same way, the structural response from an acoustic source located at xs;
radiating two coupled modes, may be written

Gðx; xs; sÞ ¼ WðE� þ EþRÞas: ð16Þ

Given C1ðsÞ; C2ðsÞ and, in particular, C1ðsÞ ¼ C2ðsÞ � CðsÞ (the first structural mode such that
jCð0Þj ¼ 1; where s ¼ 0 defines the centreline of the vibrating wall), at first sight an array of four
transducers would seem to enable measurement of the four amplitudes ða0; b0Þ or ðas; bsÞ to be
made, provided phase speeds c1 and c2 are known.

With only one secondary source the driving signal is a (complex) scalar, but the response is a
vector with two components, G1ðx; xs; sÞ and G2ðx;xs; sÞ; representing the emission of each
structural wave (slow and fast) by the secondary source. Here, minimization at one point in the
least-mean square sense results in a reduction but not complete cancellation. The attenuation
obtained is totally determined by the control system configuration and cannot be altered. On the
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other hand, it could be possible to cancel one of the two waves and to detect the other, transmitted
beyond the control accelerometer (and for xXðx0; xsÞ). This approach would make it possible not
only to visualize each coupled mode in isolation, but also to intercept the ‘‘structural mode’’ (i.e.,
the slow wave, with most of its power flow in the structural motion) that can be responsible for the
flanking effect in silencers, mentioned in Section 1. With two secondary sources, and provided
certain hypotheses concerning the linear independence in their responses were satisfied, it could be
possible to cancel out both fast and slow waves, i.e., the entire acceleration. Such an approach
would, of course, no longer be regarded as being a way of visualizing each of the coupled modes
separately.

If one focuses on the cancellation of one wave by one secondary source, the choice of the type
of control must be made. Usually, the algorithm of Eq. (11) is associated with auto-adaptive
control. Its implementation requires adaptation of the coefficients in a digital signal processor. In
the configuration dealt with here control in delayed time, with a totally predetermined controller,
leads to the same outcome. The advantage of this method is that the implementation of only the
physical experiment is needed. The drawback is that a relatively complete model is required. This
can be either numerical, or experimental in the sense that the necessary characteristics are
identified from measurements. In this exploratory work, full numerical modelling was not justified
and therefore experimental modelling was chosen. The identification was carried out with the use
of a genetic algorithm.

3.2. Measurements and identification of wave characteristics

Measurements were carried out on the duct shown in Fig. 4. The two loudspeakers played the
roles of the primary and secondary acoustic sources. The loudspeaker located at one end of the
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duct acted as the secondary source, and the other (approximately half-way along the duct in one
of the rigid walls, as shown in Fig. 4) provided the primary wave field. The sound pressure inside
the duct was detected by 16 small microphones placed at 20 mm intervals along the duct axis, in
one of the rigid walls adjacent to the flexible wall. With 16 input channels in the recording system,
50 measurement points were employed, and these required four separate recordings, each taken
with a phase reference signal. Only one accelerometer (0.65 g B&K) was used to detect the wall
acceleration and with 50 measurement points on the centreline of the flexible wall, this required 50
separate recordings. HPVEE graphic software, installed on a PC, was used to conduct the
test procedure. The distance along the flexible wall, from the rigid termination, is denoted x (see
Fig. 4).

In Figs. 5(a)–(d) and 6(a)–(d) are shown, respectively, vibratory acceleration and acoustic
pressure (amplitude and phase) at both 600 and 800Hz with source S operating, at 50 points from
x ¼ 20mm to 1:0 m by steps of 20mm. The wall acceleration shows strong undulations in both
amplitude and phase at both measurement frequencies. This suggests the existence of a standing
wave system comprising two positive-travelling coupled structural/acoustic modes (having
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Fig. 5. Acceleration on the flexible wall with source S operating. (a) Modulus, 600 Hz; (b) phase, 600Hz; (c) modulus,

800Hz; (d) phase, 800Hz.
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differing phase speeds; see Fig. 3) and two reflected coupled modes at both 600Hz and 800Hz,
given that the termination was unlikely to be completely anechoic for either mode. The acoustic
pressure pattern, on the other hand, much more closely resembles a progressive wave since it has
an almost constant amplitude and a linear phase variation with x: The phase slope is consistent
with phase speeds of approximately 360m/s (k ¼ 10:5 rad/m) and 350m/s (k ¼ 14:4 rad/m) at
600 and 800Hz respectively. It would seem, from these values, that the fast coupled mode
dominates the sound field. This is consistent with the results of Astley, Cummings and Sormaz [7],
who show that—albeit in an acoustically lined duct with one flexible wall—the ‘‘structural’’, slow,
mode makes little contribution to the sound field, even though it can be a large contributor to the
wall vibration pattern. One can assume that this behaviour applies also in the case of unlined
ducts.

From the results of Section 2, it is clear that—at each of the frequencies of interest here—two
coupled modes can propagate. At each point in the duct, both the acceleration and sound pressure
have the form of Eq. (13). If measurements are carried out at I points, located at distances xi,

ARTICLE IN PRESS

0

0.05

0.10

0.15

0.20

0 0.2 0.4 0.6 0.8 1.0

x (m)

M
od

ul
us

 o
f s

ou
nd

 p
re

ss
ur

e,
 a

rb
itr

ar
y 

un
its

-4

-2

0

2

4

0 0.2 0.4 0.6 0.8 1.0

x (m)

P
ha

se
 o

f s
ou

nd
 p

re
ss

ur
e,

 r
ad

ia
ns

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0

x (m)

M
od

ul
us

 o
f s

ou
nd

 p
re

ss
ur

e,
 a

rb
itr

ar
y 

un
its

-4

-2

0

2

4

0 0.2 0.4 0.6 0.8 1.0

x (m)

P
ha

se
 o

f s
ou

nd
 p

re
ss

ur
e,

 r
ad

ia
ns

(a) (b)

(c) (d)

Fig. 6. Sound pressure distribution the duct with source S operating. (a) Modulus, 600Hz; (b) phase, 600 Hz;

(c) modulus, 800Hz; (d) phase, 800Hz.
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these data may be written in a column vector m made up of I elements which, according to the
model, has the form

m ¼

e�ik1x1 eik1x1 e�ik2x1 eik2x1

e�ik1x2 ? ? ?

? ? ? e�ik2xI�1

e�ik1xI eik1xI e�ik2xI eik2xI

2
66664

3
77775

a1

b1

a2

b2

8>>><
>>>:

9>>>=
>>>; ¼ Ea; ð17Þ

where E is an (I,4) matrix. Where the wavenumbers are given at each frequency (e.g., from the
models described in Section 2), the least-mean square solution is a ¼ ðE�EÞ�1E�m: Of course,
there are inevitable predictive inaccuracies associated with the wavenumbers, however small. It
may be shown that, if fixed values of the wavenumbers are taken in this way, the errors result in a
dependence of the elements of the vector a (the complex wave amplitudes) on the number of
points I considered. Consequently, the decision has been taken to identify the wavenumbers k1

and k2 as well as the wave amplitudes. The problem now consists of minimizing jEa�mj2 by
adjusting a1; b1; a2 and b2; together with k1 and k2: The solution is sought by the use of a genetic
algorithm, which turned out to be suitable for this particular application. It was used in preference
to more ‘‘standard’’ techniques such as the generalized Newton–Raphson method because of its
generality and relative robustness. (The book by Goldberg [14] gives a good introduction to the
applications of genetic algorithms and includes a discussion on robustness.) The genetic algorithm
employed here follows the pattern below:

(a) Vector-individuals d A C in the sense that each of the six components di A C. Only the real
parts of the wavenumbers will be retained. A first population of M (E40) individuals is built
by randomly choosing their components. The plots in Fig. 3 provide suitable initial values for
the wavenumbers.

(b) For the members of the population, the values of

f ðdÞ ¼ Eðk1; k2Þa�mj j2 ð18Þ

are calculated and the individuals d are classified in the order of increasing value of f(d). The
first individual is therefore the ‘‘best fitted’’.

(c) The selection of the parents in the population results from a procedure akin to that known as
the ‘‘roulette method’’, i.e., the greatest chance to become parents occurs for individuals at the
top of the list organized above.

(d) Components of individuals which play the roles of parents are crossed and/or mutated. One
should remember that individuals are made up of numerical values. The set of ‘‘offspring’’
constitutes the next generation. At each generation the number of individuals is of the same
order of magnitude.

(e) Again, for each member of the new generation, f(d) is calculated and the individuals d

are again classified in the order of increasing value of f(d). If necessary, one should return to
step (c).

(f) The procedure is halted when the minimum value of f(d) no longer decreases or is sufficiently
low. Then the values of the coefficients corresponding to f min; i.e., the minimum value of f(d),
are deduced.
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Table 1 gives the values of the parameters obtained at 600 and 800Hz when either source S or
source S0 is switched on (amplitudes are on an arbitrary scale and phases are in radians). These
values stem from measurements carried out beyond the two sources in the x direction, i.e.,
between x ¼ 0:7 and 1:0m. (The sequences of measurements here were separate from those
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Table 1

Wavenumbers and modal coefficients with the two sources operating separately

Frequency (Hz) k1 (m�1)

(slow wave)

k2 (m�1)

(fast wave)

a1 (m/s2) b1 (m/s2) a2 (m/s2) b2 (m/s2)

Source S0 operating

600 49.2 10.2 0.226ei1.392 0.072ei0.0 0.338e�i2.926 0.021ei1.328

800 62.1 14.6 0.021ei2.060 0.004ei0.173 0.262e�i1.213 0.021e�i2.085

Source S operating

600 49.2 10.2 0.267e�i1.459 0.072e�i2.662 0.352ei0.268 0.027e�i1.935

800 62.1 14.6 0.185ei2.845 0.072ei1.737 0.276e�i0.968 0.013e�i2.293

0

0.2

0.4

0.6

0.8

0.70 0.75 0.80 0.85 0.90 0.95 1.00

x (m)

M
od

ul
us

 o
f a

cc
el

er
at

io
n,

 a
rb

itr
ar

y 
un

its

-4

-2

0

2

4

0.70 0.75 0.80 0.85 0.90 0.95 1.00

x (m)

P
ha

se
 o

f a
cc

el
er

at
io

n,
 r

ad
ia

ns

0

0.1

0.2

0.3

0.4

0.70 0.75 0.80 0.85 0.90 0.95 1.00

x (m)

M
od

ul
us

 o
f a

cc
el

er
at

io
n,

 a
rb

itr
ar

y 
un

its

-4

-2

0

2

4

0.70 0.75 0.80 0.85 0.90 0.95 1.00

x (m)

P
ha

se
 o

f a
cc

el
er

at
io

n,
 r

ad
ia

ns

(a) (b)

(c) (d)

Fig. 7. Reconstruction and measured data of the acceleration on the flexible wall with source S0 operating.

(a) Modulus, 600 Hz; (b) phase, 600Hz; (c) modulus, 800Hz; (d) phase, 800 Hz. ——, reconstruction; �, measured data.
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leading to Figs. 5 and 6.) Figs. 7 and 8 show the ‘‘reconstruction’’, via the use of Eq. (13), of the
vibratory acceleration amplitude and phase from the numerical values obtained from the
identification procedure, together with the measured data. Comparison between the data in
Figs. 5 and 8 reveals a satisfactory reproducibility in the relative values of amplitude and in the
phase, between independently measured sets of data. Concerning the reconstruction of the
measured data, in Figs. 7 and 8, one may note that the phases are always in good agreement with
the measurements, though the agreement is less good in the case of the amplitudes. This might
suggest that the model with just two propagating waves is insufficient and that, perhaps,
evanescent waves ought also to be included in the model.

In Table 2 a comparison is made, between the wavenumbers of the fast and slow waves at 600
and 800Hz obtained from the genetic algorithm, and those predicted from Eqs. (7) to (10). The
latter figures were computed with c ¼ 344m/s. The agreement between the ‘‘identified’’ and
computed values is close in all cases, and certainly confirms the experimentally observed fast and
slow waves as being two types of coupled mode.
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Fig. 8. Reconstruction and measured data of the acceleration on the flexible wall with source S operating. (a) Modulus,

600Hz; (b) phase, 600Hz; (c) modulus, 800 Hz; (d) phase, 800 Hz. ——, reconstruction; �, measured data.
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3.3. Visualization of individual coupled modes by active control

Active attenuation is employed here for cancellation of the slow wave, thus leaving the fast
wave propagating alone, and vice versa, with the wider context mentioned in Section 1 still being
borne in mind. Considerations of flanking mechanisms in silencers would perhaps give priority to
cancellation of the structural mode, i.e., the slow wave, in the frequency range studied. It will be
assumed that the initial problem in hand concerns the cancellation of structural motion in the
flexible wall by a purely acoustic secondary source.

Two coupled propagating modes in both the positive and negative x directions will be taken
into account, to allow for structural and acoustic reflections from the duct termination. According
to Eqs. (15) and (16), the total acceleration arising from both primary and secondary sources is

cðx; sÞ ¼ WðE� þ EþRÞðasfþ a0Þ ¼ Gðx;xs; sÞfþ c0ðx; sÞ: ð19Þ

Table 1 enables G to be found when the voltage applied to source S is recorded. Algorithm (11)
applied to cðx; sÞ leads to fopt ¼ �ð1=jjGjj2L2Þ

R
GG

�ðx; xs; sÞc0ðx; sÞ dx ds; i.e., Eq. (12) extended to
vectors, and results in (the L2-norm on G being tacit)

F ðfoptÞ ¼ Fmin ¼ �
1

jjGjj2

Z
G
G�c0 dx ds

����
����2þjjc0jj

2: ð20Þ

As long as G and c0 are not collinear vectors, the relation 0p
R
GG

�c0 dx ds
�� ��2ojjGjj2jjc0jj

2 holds
and, subsequently, 0oFminpjjc0jj

2: Only a reduction in wave amplitude is possible, not a total
cancellation. On the contrary, algorithm (11) applied to just one component of c, say g1; leads to
fopt

1 ¼ �ð1=jjG1jj
2Þ
R
G G�

1 ðx; xs; sÞg01ðx; sÞ dx ds ¼ �ða01=as1Þ; totally cancelling g1 but leading to

g2resðx; sÞ ¼ G2ðx;xs; sÞf1 þ g02ðx; sÞ ¼ CðsÞðe�ik2x þ eik2xR22Þð�as2a01=as1 þ a02Þ; ð21Þ

a non-zero quantity if ða02=as2 � a01=as1Þa0; i.e., as long as G and c0 are not collinear vectors. A
similar expression for fopt

2 ð¼ �a02=as2Þ; obtained for the cancellation of g2ðx; sÞ; generates
g1resðx; sÞ having a form analogous to (21), with appropriate changes in the indices.

A necessary hypothesis for the validity of Eq. (21) is that the reflection matrix R has to be
diagonal and identical for both the primary acceleration and the structural response. For the slow
wave this implies b01 ¼ R11a01 and bs1 ¼ R11as1; and similarly for the fast wave, i.e., b02 ¼
R22a02 and bs2 ¼ R22as2: It so happens that this hypothesis is reasonably acceptable for the fast
waves, which are absorbed well by the termination at both frequencies. For the slow waves, at
600Hz, it is still acceptable, but is rather tenuous at 800Hz. For the time being, however, the
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Table 2

Comparison between fast and slow modal wavenumbers, predicted and inferred from the genetic algorithm

Frequency (Hz) k1 (slow wave) (m�1),

Eq. (7)–(10)

k1 (slow wave) (m�1),

genetic algorithm

k2 (fast wave) (m�1),

Eq. (7)–(10)

k2 (fast wave) (m�1),

genetic algorithm

600 50.6 49.2 10.6 10.2

800 63.2 62.1 14.4 14.6
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hypothesis will be accepted, as it will later become evident that it does not prevent the desired
result from being obtained.

The other hypothesis about the non-collinearity between primary acceleration and structural
response vectors is verified as the measurements yield ða02as2 � a01=as1Þ

�� �� ¼ 0:44 at 600Hz and
0.85 at 800Hz.

Now the residual field embodied in Eq. (21) is made up of a progressive wave in e�ik2x provided
jR22j51 or jbs2j5jas2j: Similarly, control fopt

2 ¼ �a02=as2 leaves a residual progressive wave in
e�ik1x when jR11j51 or jbs1j5jas1j: According to coefficients identified from measurements at
600Hz, one has jbs1j=jas1jE0:27 and jbs2j=jas2jE0:08: The residual fast wave ought therefore to be
‘‘more’’ progressive than the residual slow wave. In the experiments, knowledge of the primary
and secondary fields gives optimal control. Both primary and secondary sources were activated
and measurements of vibratory acceleration along the centreline of the flexible duct wall were
taken. Figs. 9(a–d) show the residual fields associated with the slow and fast waves at 600Hz.
Comparison is made between the results expected from the calculations and measured data. The
fast wave, remaining after cancellation of the slow wave, may be seen to be essentially a

ARTICLE IN PRESS

0

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.70 0.75 0.80 0.85 0.90 0.95 1.00

x (m)

A
m

pl
itu

de
 o

f a
cc

el
er

at
io

n,
 a

rb
itr

ar
y 

un
its

-4

-2

0

2

4

0.70 0.75 0.80 0.85 0.90 0.95 1.00

x (m)

P
ha

se
 o

f a
cc

el
er

at
io

n,
 r

ad
ia

ns

0

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.70 0.75 0.80 0.85 0.90 0.95 1.00

x (m)

A
m

pl
itu

de
 o

f a
cc

el
er

at
io

n,
 a

rb
itr

ar
y 

un
its

-4

-2

0

2

4

0.70 0.75 0.80 0.85 0.90 0.95 1.00

x (m)

P
ha

se
 o

f a
cc

el
er

at
io

n,
 r

ad
ia

ns

(a) (b)

(c) (d)

Fig. 9. Isolation of the slow and fast waves by active control, at 600 Hz. (a) Modulus of slow wave; (b) phase of slow

wave; (c) modulus of fast wave; (d) phase of fast wave. ——, simulation; �, measured data.
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progressive wave when one considers the almost linear variation of the phase versus distance. The
phase variation, in the case of the remaining slow wave, is more perturbed by oscillations arising
from reflection at the duct termination. Nevertheless, the discrimination between both waves is
clear.

In Fig. 10 are shown the residual fields at 800Hz and, with jbs1j=jas1jE0:39 and jbs2j=jas2jE0:05;
the remaining slow wave is, here too, not truly progressive. However, two different slopes in the
phases, at the two frequencies, are clearly apparent. Better accuracy in phase speed is obtained
from the linear nature of the phase variation for the fast wave, which is consistent with a
progressive wave. The same type of oscillation as before is observed in the phase variation for the
residual slow wave again—it can be assumed—caused by reflection from the termination. On the
other hand, the discrimination between the two waves is again quite clear. It is apparent, from
Figs. 9(a)-(d) and 10(a)-(10d), that the predictions of the residual fields for both the slow and fast
waves are better in terms of phase than amplitude. This may, as suggested earlier, be caused in
part by the neglect of the evanescent modes, which would inevitably have been present in the
experimental duct.
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Fig. 10. Isolation of the slow and fast waves by active control, at 800 Hz. (a) Modulus of slow wave; (b) phase of slow

wave; (c) modulus of fast wave; (d) phase of fast wave. ——, simulation; �, measured data.
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The results presented here indicate that it is possible to visualize, separately, the slow and fast
waves from the primary source in the experimental system, by the use of active control with a
purely acoustic secondary source, based on measurements of the structural wave field. The data in
Figs. 6(a–d) indicate that the fast acoustic wave dominates the sound field in the duct, and one
may ask whether it would be possible to use active control by an acoustic secondary source, based
on measurements of the acoustic field, to cancel this fast wave and leave only the slow coupled
mode propagating. This is certainly the case. Indeed, the optimal control of the fast acoustic wave
at 600Hz turns out to be f ¼ 0:966 e�i0:04 while the optimal control for the structural fast wave in
the experiments reported here is f ¼ 0:959 e�i0:05: The driving signals would therefore be
effectively identical in the two cases, and the residual slow structural wave with active control of
the acoustic field would be essentially that of Figs. 9(a–d). Equally, at 800Hz, optimal control of
the fast acoustic wave leads to f ¼ 1:04 ei2:85 while, in the experiment with structural/acoustic
control, one has f ¼ 0:94 ei2:90; resulting in the essentially same residual slow wave field as that in
Figs. 10(a–d). On the other hand, because of the very weak acoustic component in the slow waves,
it is not possible to use active control, based on the measured acoustic field, to cancel the slow
wave and visualize the fast wave in isolation.

4. Conclusions

In the flexible-walled duct investigated here, it was expected that two coupled structural/
acoustic modes would propagate at the test frequencies. On this basis, and given that the acoustic
and structural termination of the test duct was not perfectly anechoic, a genetic algorithm was
employed to identify the structural parts of the two incident, and two reflected, coupled modes in
terms of amplitude and phase speed. Comparisons between the measured vibration field on the
flexible wall of the duct and the vibration field ‘‘reconstructed’’ from these amplitudes and phases
revealed excellent agreement between measured and reconstructed phase, but more modest
agreement between measured and reconstructed amplitude. It is not clear whether the poorer
agreement in the case of the amplitude was caused by the genetic algorithm or, possibly, by the
neglect of evanescent coupled modes. Since increasing the number of iterations in the algorithm
failed to improve the agreement, one is tempted to question the accuracy of the two propagating
mode model, in which evanescent modes are ignored.

Notwithstanding the above comments, and on the basis of the two propagating mode model,
the exploratory attempts reported here, to visualize the two modes separately by eliminating one
by active control in order to observe the other, were largely successful. The method of active
control was implemented in delayed time. In this method the amplitude of the residual wave is
modified, but not the phase speed or the phase. The simulations of the residual vibration fields—
with active control—for the fast and slow waves were in good agreement with measured data in
terms of phase, but rather less good agreement in terms of amplitude. This is not, perhaps,
surprising in view of the relatively poor identification of amplitudes of the fast and slow wave
components, in contrast to the good agreement between reconstructed and measured phases.

Although it has been possible to demonstrate a good measure of success in isolating the fast and
slow waves by active control, the results presented here suggest that the physical description of the
wave coupling employed in this study may be inadequate (for example, by the neglect of the
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evanescent modes), and that the number of propagation parameters is insufficient. Alternatively,
it is possible that non-idealities in the experimental duct apparatus, such as in the edge clamping
arrangements, may have been responsible for the discrepancies between simulation and
measurement. It may be that a more detailed analysis of coupled mode propagation—for
example by the use of finite element analysis—would furnish a more complete and accurate
physical description, particularly in terms of coupled mode reflection from discontinuities,
together with better data on the propagation parameters.

A salient point is that the isolation of structural waves by an acoustic secondary source was
quite likely a severe test of the active control method employed in this investigation, and that
better results might have been obtained by the use of a vibrational secondary source. It was not
within the scope of the project to investigate this possibility, but it should certainly be a part of
any future, more comprehensive, study of the active control of coupled structural/acoustic waves
in ducts.

At all events, the separate visualization of each wave type, in problems involving the coexistence
of several types of wave, appears to be new field of investigation in the use of active control. It
may be that active control techniques, related to that employed here, could be of use in noise
control applications, for example in the active cancellation of predominantly structural type
coupled modes (the ‘‘slow’’ waves described here) in duct silencers, which can (as previously
mentioned) act as ‘‘flanking’’ mechanisms.
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